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ABSTRACT 
 In medical images, noise suppression is a particularly 

delicate and difficult task. A trade off between noise 

reduction and the preservation of actual image features 

has to be made in a way that enhances the diagnostically 

relevant image content. The main properties of a good 

image denoising model are that it will remove noise while 

preserving edges and contours. This paper proposes a 

new denoising technique called Contourlet transform. 

This method of contourlets has been used extensively for 

denoising medical image. It provides a flexible multi 

resolution, local and directional image expansion. The 

contourlet transform is realized efficiently via double 

iterated filter bank structure where the Laplacian 

Pyramid (LP) filter in the first stage is used to capture 

the point discontinuities, and then followed by a 

directional filter bank (DFB) to link the point 

discontinuities. 

              In this paper, we evaluate Contourlets denoising 

procedures using medical test images corrupted with 

additive Gaussian noise,salt&pepper noise, multiplicative  

noise and compare the performance with FBP,Wavelets, 

in terms of the peak-signal-to-noise ratio (PSNR) as a 

measure of the quality of denoising.Expermental results  

shows that the contourlet transform outperforms the 

other two techniques.  

Keywords— Contourlets, Denoising, FBP,   Laplacian 

Pyramid (LP), Tomography, Wavelets.  

 

I.INTRODUCTION 
 

Interest in digital image processing methods stems 

from two principal application areas: improvement of 

pictorial information for human interpretation and 

processing of image data for storage, transmission, and 

representation for autonomous machine perception. An 

image is often corrupted by noise in its acquisition and 

transmission. Image denoising is used to remove the noise 

while retaining as much as possible the important signal 

features.  All denoising methods show an outstanding 

performance when the image models corresponds to the 

algorithm assumptions, but fails in general and create 

artifacts or remove image fine structures.In the filtered back 

projection technique We are interested in the recovery of an 

image f from its tomographic projections Y, also called 

sinograms, and defined as:                                 

      

   Y = R f + W                   (1) 

 

 

Where f[n1, n2] Є C
N2

 is the observed image, W is 

an additive noise, usually modelled as Poisson or Gaussian 

noise, and R is the discrete Radon transform. The discrete 

Radon transform is derived from its continuous version Rc, 

which is equivalent to the X-ray transform in two 

dimensions and is defined as  

                 

- -
( ) = ( ¸ ) ( cos + sin )θP t f x y δ x θ y θ dxdy

 

                      (2) 

 

Where f(x, y) Є 
2
, δ is the Dirac delta function and 

θ Є [0,2π].  In the discrete Radon transform, a line integral 

along x cos θ + y sin θ = t can be approximated by a 

summation of the pixel values inside the strip t - ½ < n1 cos 

θ +n2 sin θ < t + ½.  The generation of sinogram data 

corrupted by additive Gaussian noise is shown in Figure.1.  

 

 

Fig.1 Generation of Noisy Sinogram 

       Computerized Tomography measure the density or 

the metabolic activity of a section of the patient‘s body (i.e., 

roughly speaking, produce sinograms Y), and an estimation 

of the image f(x, y) representing the observed section is 

derived by a tomographic reconstruction procedure from the 

sinograms. This sinogram is filtered by usinf a ramp filter to 

eliminate the noise and then inverse radon transform is 

obtained which is also called as back projection to 

reconstruct the original image.The back projection technique 

suffers from blurring operator. FBP suffers from serious 

performance limitations, due to the fact that the vectors of 

the Fourier basis provide a good representation 

(diagonalization) of the Radon operator, but are not adapted 

to represent spatially inhomogeneous data such as medical 

images. A fundamental difficulty of tomographic 

reconstruction comes from the fact that the Radon transform 

is a smoothing transform, and inverting the Radon transform 

in presence of additive noise is an ill-posed inverse problem, 

because R
-1

 is not a bounded linear operator; numerically 

speaking, a direct computation of R
-1

f  would be 

contaminated by a huge additive noise  z = R
-1

 W. [1]. 

To improve the performance of tomographic 

reconstruction procedures, researchers have studied iterative 

statistical model based techniques. These approaches can 

provide a significant improvement over FBP.One of such 
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technique is the Wavelet transform to estimate the signal 

from the noisy data.  For, 1-D piecewise smooth signals like 

scan line of an image, 1-D wavelets have been established as 

the right tool .However natural images are not simple stacks 

of , 1-D piecewise smooth scan lines ; discontinuity points 

that is edges are typically located along smooth curves that 

is contours  owing to smooth boundaries of physical objects . 

As a result of separable extinction from 1-D bases wavelets 

in 2-D are good at isolated the discontinuities at edge points, 

but will not see smoothness along contours[4]. The 

weakness of the wavelet domain is that it typically does not 

economically represent the noise. Therefore the wavelet 

shrinkage is unsatisfactory with large MSE; the estimate is 

either noisy or distorted. The limitations of commonly used 

separable extensions of 1-D transforms, such as Fourier and 

Wavelet transforms in capturing the geometry of image 

edges are well known. 

In this paper we perceive a true 2-D transform called 

contourlet transform that can capture the intrinsic 

geometrical structure that is key in visual information [2]. 

This method of contourlets has been used extensively for 

denoising medical image. It provides a flexible multi 

resolution, local and directional image expansion. The 

contourlet transform is realized efficiently via double 

iterated filter bank structure where the Laplacian Pyramid 

(LP) filter in the first stage is used to capture the point 

discontinuities, and then followed by a directional filter bank 

(DFB) to link the point discontinuities[9]. 

II.LIMITATIONS OF OTHER DENOISING TECHNIQUES  

 

              Filtered back projection (FBP) method of image 

denoising uses inverse Radon transform. But the inversion of 

the radon transform in the presence of noise is numerically 

unstable in tomographic image reconstruction and is said to 

be ill conditioned. Wavelet transform, a multiscale transform 

is good at isolating the discontinuities at edge points, but 

will not see the smoothness along the contours.  

                    The image denoising techniques such as   the 

steerable pyramid, brushlets which are multiscale and 

directional image representations do not allow for a different 

number of directions at each scale while achieving nearly 

critical sampling. The recently developed approaches for the 

efficient representations of geometrical regularity including 

the image denoising techniques such as ridgelets, wedgelets, 

require an edge-detection stage, followed by an adaptive 

representation [8].By contrast, curvelet representation is 

fixed transform. This feature allows it to be easily applied in 

a wide range of image processing tasks, similar to wavelets. 

The curvelet construction simple in the continuous domain 

but causes the implementation for discrete images – sampled 

on a rectangular grid – to be very challenging. In particular, 

approaching critical sampling seems difficult in such 

discretized constructions [6]. 

III.IMAGE DENOISING USING CONTOURLETS 

The good image denoising technique should posses 

the following 5 properties 

 1. Multiresolution   2 .Localization 3. Critical 

sampling   4. Directionality           5 .Anisotropy 

Among these desired data the first three are 

successfully provided by separable wavelets, while the last 

two are provided by the contourlet transform. This 

contourlets [9] uses nonseparable double filtered structure 

for obtaining the spares expansions for typical images 

having smooth contours .In this double filter bank the 

laplacian pyramid is first used to capture the points 

discontinuities ( multiresolution expansion ) and then 

followed  by  directional filter banks to link point  

discontinuities(multi directional expansion). 

 
III.I  Review of contourlet Transform 

 

Pyramid frames 

One way to obtain a multiscale decomposition is to 

used Laplacian pyramid (LP) .This LP decomposition at 

each level generates a down sampled low pass version of the 

original image and the prediction resulting in a band pass 

image. The following figure depicts this decomposition 

process where H and G are called (low pass) Analysis and 

synthesis filters, respectively and M is sampling matrix .the 

process can be iterated on the course (down sampled low 

pass) signal .in multidimensional filter banks ,sampling is 

represented by sampling matrices ; for example ,down 

sampling x[n] by M yields xd [n] = x [Mn], where M is an 

integer matrix. 

 

 

Fig:2 LPone level of decomposition 

 

 

Fig:3 The new reconstruction scheme for the LP 

 

The LP has distinguishing feature that this does not 

have scrambled frequencies. This frequency scrambling 

happens in the wavelets filter bank when a high pass channel, 

ofter down sampling is folded back into low frequency band 

and thus its spectrum is reflected. In the LP, this effect is 

avoided by down sampling the low pass channel only. 

The LP orthogonal filters that is analysis and 

synthesis filters, or time reversal ,h[n]=g[-n] and g[n] is 

orthogonal to it‘s translates with respect to sampling lattice 

by M provides a tight frame with frame bounds are equal to 

one .in this case ,we proposed the use of optimal linear 

reconstruction using dual frame operator as shown in 

Fig.3.The new reconstruction differs from the usual method 

where the signal is obtained by simply adding back the 

difference to prediction from course signal  and was shown 
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to achieve significant improvement over usual 

reconstruction in presence of noise . 

 

Iterated directional filter banks: 

The directional filterbanks    (DFB) is efficiently 

implemented via an l-level binary tree decomposition that 

leads to 2
l
 sub bands with wedge shaped frequency 

partitioning as shown in Fig.4 

 

 

Fig:4 

 

 

 

This DFB is constructed from two building blocks 

the first building block is a two channel quincunx filter 

banks with fan filters (see Figure.5) that divides a 2-D 

spectrum in to two directions:horizontal and vertical .the 

second building block is a shearing operator which amount 

to just reordering of  image samples. 

 

Figure.5 Two-dimensional spectrum partition using 

quincunx filter banks with fan filters. The black regions 

represent the ideal frequency supports of each filter. Q is a 

quincunx sampling matrix. 

The following figure shows an application of shearing 

operator where a -45
º   

edge becomes a vertical edge. 

 

Figure.6 Example of shearing operation that is used like a 

rotation operationfor DFB decomposition. (a) The 

―cameraman‖ image. (b) The ―cameraman‖image after a 

shearing operation. 

By adding a pair of shearing operators and its 

inverse (unshearing) to before and after, respectively, a two 

channel filter bank in Figure.5 we obtained a different 

directional frequency partition while maintaining perfect 

reconstruction. Thus the key in, the DFB is to use an 

approximate combination of shearing operators together 

with to direction partition of quincunx filter banks at each 

node in a binary tree structured filter bank, to obtain the 

desired 2-D spectrum division as shown in the Figuer.4 

Using multirate identities ,it is instructive to view an l-level 

tree structured DFB equivalently as a  2
l
 parallel channel 

filter bank with equivalent filters and overall sampling 

matrices as shown in the Figure.7.Denote these equivalent 

(directional) synthesis filters as 
)(l

kD ,0≤k<2 
l
 which 

correspond to the sub bands indexed as Figure.4. 

 

 

Figure.7 The multichannel view of an l-level tree-structured 

directional filter bank.The corresponding overall sampling 

matrices were shown to have following diagonal forms 

 

1

1
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Which means sampling is separable. The two sets 

correspond to the mostly horizontal and mostly vertical sets 

of directions, respectively. From the equivalent parallel view 

of the DFB, we see that the family 

 

       ]}[{ )()( mSnd l

k

l

k   0≤k< 2 
l
 ,mЄz

2                                    (4)                     

 

Obtained by translating the impulse responses of the 

equivalent synthesis filters )(l

kD  over the sampling lattices by 

)(l

kS  provides a basis for discrete signals in l
2
(Z

2
).This basis 

exhibits both directional and localization properties. 

We choose ‗9-7’biorthogonal filters because they 

have been shown to provide the best results fir images, 

partly because they are linear phase and are close to bring 

orthogonal. In the DFB stage we use the ‗23-45’ 

(‘pkva’)biorthogonal quincunx filters designed by 

Phoong,Kim,Vidyanathan,andAnsari and modulated them to 

obtain the biorthogonal fan filters. Apart from also being 

linear phase and nearly orthogonal, these fan filters are 

closed to having the ideal frequency response and thus can 

approximate the directional vanishing moment condition. 
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Multiscale and directional decomposition: The discrete 

contourlet transform 

 

Combining the Laplacian pyramid and the 

directional filter bank, we are now ready to describe their 

combination into a double filter bank structure .since the 

directional filter bank (DFB) was designed  to capture the 

high frequency (representing directionality )of the input 

image , the low frequency content is poorly handled .in fact, 

with the frequency partition shown in Figure.4.,low 

frequency would leak into several directional sub 

bands ,hence the DFB alone does not provide a sparse 

representation for images. This fact provides another reason 

to combine the DFB with a multiscale decomposition, where 

low frequencies of input image are removed before applying 

the DFB.Figure.3.2.7. shows multiscale and directional 

decomposition using a combination of a Laplacian pyramid 

(LP) and a directional filter bank (DFB).band pass images 

from the LP are fed into a DFB so that directional 

information can be captured .The scheme can be iterated on 

the coarse image .The combined result is a doubled iterated 

filter bank structure, named contourlet filter bank, which 

decomposes images into directional sub bands at multiple 

scales. 

 

Figure.8. The contourlet filter bank: first, a multiscale 

decomposition into octave bands by the Laplacian pyramid 

is computed, and then a directional filter bank is applied to 

each band pass channel. 

Specifically ,let a0[n] be the input image .the 

output after the LP stage is J band pass images bj[n], j 

=1,2,3……..J (in the fine –to-coarse order ) and a low 

pass image aJ[n].that means , the j-th level of the LP 

decomposes the image aj-1[n] into a coarser image  aj[n] 

and a detail image bj[n] is further decomposed by an lj 

level DFB into j
l

2 ,Band pass directional image  

 

][
)(

, nc jl

kj ,k =0,1,2 …. j
l

2 -1. 

 

Contourlets and directional multiresolution Analysis: 

As for the wavelet filter bank , the contourlet filter 

bank [9] has an associated continuous –domain  expansion in 

L2(R
2
) using the contourlet functions .The new elements in 

the frame work are multidirection and it‘s combination with 

multi scale .For simplicity, we will only consider the case  

with orthogonal filters , which leads tight frames . 

A.Multiscale 

We start with the multiresolution analysis for the 

LP ,which is similar to the  one for wavelets .suppose that 

the LP in the contourlet filter bank uses orthogonal filters  by 

2 in each dimension (that means M= diag (2,2) in figure 

2 ).Under certain regularity conditions ,the low pass 

synthesis filter G in the  iterated  LP uniquely defines a 

unique scaling function   (t)Є L2 ( R
2
 )   that satisfies the 

following two scale equation 

     ntngt
Zn

 


22
2

                    (5) 

Let      2

, ,,
2

2
2 znZj

nt
j

j
j

nj 






 
    

Then the family   2, Znnj 
  is an orthonormal basis for an 

approximation subspace V j at the scale 2
j
. further more 

 
ZjjV


 provide a sequence of multiresolution nested 

subspaces … 
21012   VVVVV ……..,where V j   is 

associated with uniform grid of intervals2
j
 ×2

j
  that 

characterizes image approximation at scale 2
j
  .the difference 

images in the LP contain the detail necessary to increase the 

resolution between two consecutive approximation 

subspaces .Therefore ,the difference image live  in a 

subspace Wj  that is the orthogonal compliment of V j  in V j-

1 ,or 
jjj WVV 1
 .In ―Framing pyramids ― we show that 

the LP can be considered as an over sampled filter bank 

where each polyphase component of difference image b[n] 

in figure 2 ,together with the  coarse image a[n] ,comes from 

a separate  filter bank  channel with the same sampling 

matrix diag (2,2) .Let Fi (Z) , 0≤i≤3 be synthesis filters for 

these polyphase components .these are high pass filters .As 

for wavelets ,we associated with each of these filters a 

continuous  functions  ti)(   where 

 

     ntnft
zn

i

i  


22
2

)(                          (6) 

using the above equation   we can say that if 

    2)(

, ,,
2

2
2 ZnZj

nt
t

j

j
iji

nj 






 
           (7) 

Then for scale 2
j
 , 

2,30

)(
,

Zni

i
nj







 is a tight frame 

for Wj . For all scales, 

2,30,

)(
,

ZniZj

i
nj







  is a   tight frame for L2 

( R
2
 )   .in both cases the frame bounds are equals to 1. 

B.Multidirection 
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In the iterated contourlet filter bank ,the discrete basis of the 

DFB can be regarded as a change of basis for the continuous 

domain  subspaces  for the  multiscale analysis in the last 

section .suppose that   the DFB ‗s  in the contourlet bank 

uses orthogonal filters .Although in the contourlet transform 

the DFB is applied to difference images or the detail 

subspaces Wj  we first show what happens when the DFB  is 

applied to the approximation subspaces Vj.Suppose that  

2,,
zn

l

nkj







 







   is an orthonormal of subspace 
 l
kjV ,  .to 

increase the directional resolution , an extra level of 

decomposition by pair of orthogonal filter is applied to the 

channel represented by 
 l
kd    that leads to two channels with 

equivalent filters   
   1

12

1

2





 l

k

l

k anddd   .This transform the 

orthonormal basis   
2,,

zn

l

nkj







 







 .Each of 

These families generate subspace with finer directional 

resolution. 

So we can say that if  
          tnSmdt mj

l

k

Zm

l

k

l

nkj ,,,
2

  


 for arbitrary but 

finite l .Then the family 
   2,, zn

l

nkj 
 is an orthonormal 

basis of directional subspace 
 l
kjV ,    for each k= 0, 

1,2…………2
l
-1 .Furthermore 

 

     1

12,

1

2,,





  l

kj

l

kj

l

kj VVV                    (8) 

 

   l
kj

l

kj VV ',,   for k ≠
'

k  and                 (9) 

 

         
 l
kj

k
j VV

l

,

12

0




                   (10) 

III.II  Image Denoising using contourlet transform 

The improvement in approximation by contourlets based on 

keeping the significant coefficients will directly lead to 

improvement in applications, including compression, 

denoising, and feature extraction. As an example, for image 

denoising, random noise will generate significant wavelet 

coefficients just like true edges, but is less likely to generate 

significant contourlet coefficients. Consequently, a simple 

thresholding scheme applied on the contourlet transform is 

more effective in removing the noise than it is for the 

wavelet transform. 

The algorithm is 

1. Choose the appropriate filters for pyramidal and 

directional decomposition. 

2. Choose the no of levels in the pyramid levels of pyramid. 

3.Choose the appropriate values for threshold (Th) and for 

noise level ( rho). 

4. Generate noisy image. 

5. Perform multiscale and multidirectional decomposition on 

the noisy image. 

6. Calculate the contourlet threshold by using the given 

threshold. 

7. Apply thesholding for noisy coefficients. 

8. Perform multistage and multidirectional reconstruction to 

reconstruct the denoised image. 

9. Calculate the PSNR value to compare it with wavelet 

PSNR. 

The contourlet transform is shown to be more 

effective in recovering smooth contours, both visually as 

well as in PSNR than wavelets. 

 

IV. IMPLEMENTATION AND RESULTS 

Implementation 

The well-known Shepp-Logan ‗head phantom‘ of 

size 256X256, is taken as test images. The number of angles 

is 256 and the number of projections is 256.It is shown in 

Fig 9. 

The image in Fig. 9 is composed of 10 ellipses, as illustrated 

in Fig 10.The parameters of these ellipses are given in 

Table-1       

 

 
         

 

 
    Table-1: Summary of parameters for tomography 

simulation 

 

The three types of  noise, Gaussian of different 

means and  different variances, multiplicative noise(speckle )  

of different variances , salt & pepper of  different densities 

are  added to the test image .The algorithms of 

FBP ,wavelets and  contourlets are implemented in 
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MATLAB.The performance of these algorithms are 

compared by using peak signal to noise ratio(PSNR) 

value.Contourlets are shown to be superior compared to 

wavelets in capturing fine contours. In addition to there is 

significant gain in PSNR for contourlets. 

 

Results 
 

The results of all the 3 algorithms FBP,wavelets , 

contourlets when those are applied to denoise the head  

 

 

photom image having  different properties of noises 

are given below. 

 

   Gaussian noise of mean=0,varience=0.01 

 
 

Gaussian noise of mean=0.1,varience=0.02 

 

 

speckle noise of varience=0.07 

 
 

speckle noise of varience=0.1 

  

    Salt &pepper noise of density =0.03  

 

 

Salt pepper noise of density =0.07 

 

 

 

 

 

 

Performance tables 
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V.CONCLUSIONS 

 In this paper, how a tomographic noisy image is 

denoised by using contourlet transform is presented. Using 

recent results from harmonic analysis and vision, we first 

identified two key features of contourlet transform that 

improves over the separable 2-D wavelet transform, namely 

directionality and anisotropy. Based on this observation, we 

developed a new filter bank structure, the contourlet filter  

 

bank, that can provide a flexible multiscale and 

directional decomposition for images. The developed 

discrete filter bank has a precise connection with the 

associated continuous-domain contourlet expansion. This 

connection is defined via a directional multiresolution 

analysis that provides successive refinements at both spatial 

and directional resolution. Along with the contourlet 

algorithm, wavelet and FBP algorithms and their advantages 

and limitations are presented in this paper. The results show 

that wavelets are superior to FBP. The contourlet transform 

is shown to be more effective than wavelets in recovering 

smooth contours, both visually as well as in PSNR.  

ACKNOWLEDGMENT 

 

The author wish to thank Dr. V.M Rao, director 

,Dr.M.V Rao ,principal   of Vignan‘s Lara Institute of 

Technology and Science, Vadlamudi for their constant 

encouragement to this work. 

 

REFERENCES 

[1]  A.C.Kak  and  M.Slaney, ―Principles   Of   

Computerized    Tomographic imaging‖,  3,49, IEEE press, 

(1987). 

 

[2]  Boaz Matalon, Michael Zibulevsky, and Michael Elad, 

―Image denoising with the Contourlet transform,‖ in 

Proceedings of the SPIE conference wavelets, July 2005, vol. 

5914. 

 

[3] Elsa D. Angelini, Jérôme Kalifa, Andrew F. Laine  

‗‗  Harmonic Multiresolution Estimators For Denoising And 

Regularization Of Spect-pet data ‘‘ Presented at the IEEE 

International Symposium on Biomedical Imaging, 

Washington D.C., USA, 2002. 

 

[4]   Farrokh Rashid-Farrokhi, Student Member, IEEE, K. J. 

Ray Liu, Senior Member, IEEE,Carlos A. Berenstein, and 

David Walnut‖ Wavelet-Based Multiresolution   Local 

Tomography‖ IEEE  Trans.on Image Processing  vol. 6, no. 

10, October 1997. 

 

 [5] Javier Portilla, Vasily Strela, Martin J. Wainwright, and 

Eero P. Simoncelli‖ Image Denoising Using Scale Mixtures 

of Gaussians in the Wavelet Domain‖ IEEE  Trans.on Image 

Processing  vol. 12, no. 11,November 2003. 

 

[6]   Jean-Luc Starck, Emmanuel J. Candès, and David L. 

Donoho ‘‘The Curvelet Transform for Image Denoising‖ 

IEEE  Trans.on Image Processing,vol.11,no.6,June 2002 

 

[7]   Lakhwinder Kaur Savita Gupta R.C. Chauhan‘‘ Image 

Denoising using Wavelet Thresholding‖. 

 

[8]  L. Demaret, F. Friedrich, H. FÄuhr and T. Szygowski 

―Multiscale wedgelet denoising algorithms‖ 

 

[9] Minh N. Do and Martin Vetterli, ―The contourlet 

transform: An efficient directional multiresolution image 

representation,‖IEEE Trans. on Image Processing, to appear, 

2004. 

  

   

    

    

    

    

 


